论文标题

一个弱监督的卷积网络,用于变化细分和分类

A Weakly Supervised Convolutional Network for Change Segmentation and Classification

论文作者

Andermatt, Philipp, Timofte, Radu

论文摘要

完全监督的更改检测方法需要难以购买像素级标签,而弱监督的方法可以使用图像级标签培训。但是,这些方法中的大多数都需要更改和不变的图像对进行训练。因此,这些方法不能直接用于仅可用的图像对的数据集。我们提出了W-CDNET,这是一个新型弱监督的变更检测网络,可以使用图像级的语义标签进行训练。此外,W-CDNET可以使用两种不同类型的数据集训练,要么仅包含更改的图像对,要么是更改和不变的图像对的混合物。由于我们使用图像级语义标签进行训练,因此我们同时创建一个更改掩码,并为单标签图像的更改对象标记。 W-CDNET采用W形暹罗U-NET从图像对提取特征图,然后进行比较,以创建原始的更改掩码。我们模型的核心部分是变更分割和分类(CSC)模块,通过使用自定义重新映射块,然后使用更改掩码对当前输入图像进行分割,从而在隐藏层上学习了准确的更改掩码。分段的图像用于预测图像级的语义标签。仅当更改掩码实际标记相关更改时,才能预测正确的标签。这迫使模型学习准确的更改面罩。我们证明了方法的细分和分类性能,并在AICD和HRSCD上取得了最佳结果,两个公共空中成像变更检测数据集以及食物浪费更改检测数据集。我们的代码可在https://github.com/phiabs/w-cdnet上找到。

Fully supervised change detection methods require difficult to procure pixel-level labels, while weakly supervised approaches can be trained with image-level labels. However, most of these approaches require a combination of changed and unchanged image pairs for training. Thus, these methods can not directly be used for datasets where only changed image pairs are available. We present W-CDNet, a novel weakly supervised change detection network that can be trained with image-level semantic labels. Additionally, W-CDNet can be trained with two different types of datasets, either containing changed image pairs only or a mixture of changed and unchanged image pairs. Since we use image-level semantic labels for training, we simultaneously create a change mask and label the changed object for single-label images. W-CDNet employs a W-shaped siamese U-net to extract feature maps from an image pair which then get compared in order to create a raw change mask. The core part of our model, the Change Segmentation and Classification (CSC) module, learns an accurate change mask at a hidden layer by using a custom Remapping Block and then segmenting the current input image with the change mask. The segmented image is used to predict the image-level semantic label. The correct label can only be predicted if the change mask actually marks relevant change. This forces the model to learn an accurate change mask. We demonstrate the segmentation and classification performance of our approach and achieve top results on AICD and HRSCD, two public aerial imaging change detection datasets as well as on a Food Waste change detection dataset. Our code is available at https://github.com/PhiAbs/W-CDNet .

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源