论文标题
4个manifolds的同喻分类,其基本组为二二二木
Homotopy classification of 4-manifolds whose fundamental group is dihedral
论文作者
论文摘要
我们表明,有限定向的庞加莱4复合物的同型类型取决于其二次2型,只要其基本组是有限的,并且具有二面体Sylow 2-Subgroup。通过与Hambleton-Kreck和Bauer的结果结合使用,这适用于平滑定向的4个manifolds的情况下,其基本组是SO的有限亚组(3)。一个重要的例子是具有有限基本组的椭圆表面。
We show that the homotopy type of a finite oriented Poincaré 4-complex is determined by its quadratic 2-type provided its fundamental group is finite and has a dihedral Sylow 2-subgroup. By combining with results of Hambleton-Kreck and Bauer, this applies in the case of smooth oriented 4-manifolds whose fundamental group is a finite subgroup of SO(3). An important class of examples are elliptic surfaces with finite fundamental group.