论文标题
加速组合滤波器通过约束减少
Accelerating combinatorial filter reduction through constraints
论文作者
论文摘要
组合过滤器的减少涉及压缩机器人使用的状态表示。这种优化是在自动化简约机器人的自动化时出现的。但是,确切的组合滤波器还原是一个NP完整的问题,并且所有当前技术都是不确定的,要么是正式的,并且具有指数的许多约束。本文提出了一种新的形式化,仅需要多项式约束,并以三种不同形式的这些约束来表征这些约束:非线性,线性和结合性正常形式。经验结果表明,结合性正常形式的约束最有效地捕获了该问题,从而导致了一种胜过其他问题的方法。进一步的检查表明,在迭代过滤器减少期间,大量约束仍然不活跃。为了利用这一观察结果,我们引入了这种约束的及时生成,从而可以提高效率,并有可能最大程度地减少大量过滤器。
Reduction of combinatorial filters involves compressing state representations that robots use. Such optimization arises in automating the construction of minimalist robots. But exact combinatorial filter reduction is an NP-complete problem and all current techniques are either inexact or formalized with exponentially many constraints. This paper proposes a new formalization needing only a polynomial number of constraints, and characterizes these constraints in three different forms: nonlinear, linear, and conjunctive normal form. Empirical results show that constraints in conjunctive normal form capture the problem most effectively, leading to a method that outperforms the others. Further examination indicates that a substantial proportion of constraints remain inactive during iterative filter reduction. To leverage this observation, we introduce just-in-time generation of such constraints, which yields improvements in efficiency and has the potential to minimize large filters.