论文标题
标量场理论中的Olbertian分区功能
Olbertian partition function in scalar field theory
论文作者
论文摘要
Olbertian分区功能是根据Landau-Ginzburg行动的连续(Abelian)领域重新制定的。为了取得一定的进步,在添加哈密顿量的四分之一landau-ginzburg术语之前,对分区函数的高斯近似被转化为奥尔伯特式。最终结果以适合于示意技术的应用形式提供,一旦给出了田地的性质,即一旦字段方程写下来,就可以制定相互作用。
The Olbertian partition function is reformulated in terms of continuous (Abelian) fields described by the Landau-Ginzburg action, respectively Hamiltonian. In order do make some progress, the Gaussian approximation to the partition function is transformed into the Olbertian prior to adding the quartic Landau-Ginzburg term in the Hamiltonian. The final result is provided in the form of an expansion suitable for application of diagrammatic techniques once the nature of the field is given, i.e. once the field equations are written down such that the interactions can be formulated.