论文标题

机器阅读理解中的答案跨度校正

Answer Span Correction in Machine Reading Comprehension

论文作者

Reddy, Revanth Gangi, Sultan, Md Arafat, Kayi, Efsun Sarioglu, Zhang, Rong, Castelli, Vittorio, Sil, Avirup

论文摘要

机器阅读理解(MRC)中的答案验证包括针对输入上下文和问题对验证答案。以前的工作已经考虑重新评估鉴于提取的答案的问题的“答案”。在这里,我们解决了一个不同的问题:现有MRC系统在提出可回答问题时产生部分正确答案的趋势。我们探讨了此类错误的性质,并提出了一种后处理校正方法,该方法在单语和多语言评估中对最先进的MRC系统产生了统计学上显着的性能改善。

Answer validation in machine reading comprehension (MRC) consists of verifying an extracted answer against an input context and question pair. Previous work has looked at re-assessing the "answerability" of the question given the extracted answer. Here we address a different problem: the tendency of existing MRC systems to produce partially correct answers when presented with answerable questions. We explore the nature of such errors and propose a post-processing correction method that yields statistically significant performance improvements over state-of-the-art MRC systems in both monolingual and multilingual evaluation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源