论文标题
非镜面半污染物非线性schrödinger方程的孤子的离散流氓波和爆炸
Discrete rogue waves and blow-up from solitons of a nonisospectral semi-discrete nonlinear Schrödinger equation
论文作者
论文摘要
我们研究了半分化非线性schrödinger方程的非镜面效应,该方程是其连续对应物的直接整合离散化。提出了方程式的双线性形式和双重casoratian溶液。分析了解决方案的动力学。孤子和多个极点解决方案都允许时空局部流氓波行为。更有趣的是,该解决方案允许在有限的时间$ t $爆炸。
We investigate the nonisospectral effects of a semi-discrete nonlinear Schrödinger equation, which is a direct integrable discretisation of its continuous counterpart. Bilinear form and double casoratian solution of the equation are presented. Dynamics of solutions are analyzed. Both solitons and multiple pole solutions admit space-time localized rogue wave behavior. And more interestingly, the solutions allow blow-up at finite time $t$.