论文标题

信任问题:不确定性估计无法在医疗表格数据上可靠检测可靠的OOD检测

Trust Issues: Uncertainty Estimation Does Not Enable Reliable OOD Detection On Medical Tabular Data

论文作者

Ulmer, Dennis, Meijerink, Lotta, Cinà, Giovanni

论文摘要

当在高风险现实世界中(例如医疗保健)中部署机器学习模型时,至关重要的是要准确评估有关模型对异常投入的预测的不确定性。但是,文献缺乏在医学数据上分析此问题的文献,尤其是在混合型表格数据(例如电子健康记录)上。我们通过提出一系列测试来缩小这一差距,包括各种当代不确定性估计技术,以确定他们是否能够识别分布外(OOD)患者。与以前的工作相反,我们设计了对现实和临床相关的OOD组的测试,并在现实世界中进行实验。我们发现,几乎所有技术都无法实现令人信服的结果,部分不同意早期的发现。

When deploying machine learning models in high-stakes real-world environments such as health care, it is crucial to accurately assess the uncertainty concerning a model's prediction on abnormal inputs. However, there is a scarcity of literature analyzing this problem on medical data, especially on mixed-type tabular data such as Electronic Health Records. We close this gap by presenting a series of tests including a large variety of contemporary uncertainty estimation techniques, in order to determine whether they are able to identify out-of-distribution (OOD) patients. In contrast to previous work, we design tests on realistic and clinically relevant OOD groups, and run experiments on real-world medical data. We find that almost all techniques fail to achieve convincing results, partly disagreeing with earlier findings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源