论文标题
Kompare:知识图比较推理系统
KompaRe: A Knowledge Graph Comparative Reasoning System
论文作者
论文摘要
推理是利用知识图的宝贵见解,知识和模式的基本能力。现有的工作主要集中在点上的推理上,包括搜索,链接预测,实体预测,子图匹配等。本文介绍了对知识图的比较推理,该论点旨在推断出相对于多个线索的共同点和不一致。我们设想,比较推理将在知识图上补充并扩展现有的点上的推理。从详细的角度来看,我们开发了Kompare,这是同类原型系统中的第一个,它在大型知识图上提供了比较推理能力。我们同时介绍系统体系结构及其核心算法,包括知识部分提取,成对推理和集体推理。经验评估证明了提出的kompare的功效。
Reasoning is a fundamental capability for harnessing valuable insight, knowledge and patterns from knowledge graphs. Existing work has primarily been focusing on point-wise reasoning, including search, link predication, entity prediction, subgraph matching and so on. This paper introduces comparative reasoning over knowledge graphs, which aims to infer the commonality and inconsistency with respect to multiple pieces of clues. We envision that the comparative reasoning will complement and expand the existing point-wise reasoning over knowledge graphs. In detail, we develop KompaRe, the first of its kind prototype system that provides comparative reasoning capability over large knowledge graphs. We present both the system architecture and its core algorithms, including knowledge segment extraction, pairwise reasoning and collective reasoning. Empirical evaluations demonstrate the efficacy of the proposed KompaRe.