论文标题
Stepanov伪数几乎是周期性的功能和应用
Stepanov pseudo almost periodic functions and applications
论文作者
论文摘要
在这项工作中,我们介绍了Stepanov伪伪数的基本结果和应用,几乎是周期性的功能。仅使用连续性假设,我们证明了$μ$ -PSEUDO在Stepanov意义上几乎周期性功能的新组成结果。此外,我们向半线性微分方程和夹杂物介绍了不同规则强迫术语的Banach空间中的应用。我们证明了$ $ $ $ $ $ $ $ $ $ $ $ - 二几乎是周期性的解决方案(从强大意义上)到一类半线性分数夹杂物和半线性进化方程式,只要非线性强迫术语是stepanov $ $ $ $ $ $ $ -pseud的第一个可变性和不合规性的构图,而不是统一的严格限制。还提出了一些说明我们理论结果的例子。
In this work, we present basic results and applications of Stepanov pseudo almost periodic functions with measures. Using only the continuity assumption, we prove a new composition result of $μ$-pseudo almost periodic functions in Stepanov sense. Moreover, we present different applications to semilinear differential equations and inclusions in Banach spaces with weak regular forcing terms. We prove the existence and uniqueness of $μ$-pseudo almost periodic solutions (in the strong sense) to a class of semilinear fractional inclusions and semilinear evolution equations, respectively, provided that the nonlinear forcing terms are only Stepanov $ μ$-pseudo almost periodic in the first variable and not a uniformly strict contraction with respect to the second argument. Some examples illustrating our theoretical results are also presented.