论文标题

亲和力LCFCN:学习以微弱的监督对鱼进行分割

Affinity LCFCN: Learning to Segment Fish with Weak Supervision

论文作者

Laradji, Issam, Saleh, Alzayat, Rodriguez, Pau, Nowrouzezahrai, Derek, Azghadi, Mostafa Rahimi, Vazquez, David

论文摘要

水产养殖行业依赖于准确的鱼身测量值,例如长度,宽度和质量。依靠像统治者这样的物理工具的手动方法是时间和劳动密集型。领先的自动方法依赖于完全监督的分割模型来获取这些测量值,但是这些方法需要收集每个像素标签 - 还需要耗时且费力地进行:即,每条鱼最多可能需要两分钟才能产生准确的细分标签,几乎总是需要至少进行一些手动干预。我们提出了一个自动分割模型,该模型有效地对仅用点级监督标记的图像进行了有效训练,在该图像中,每只鱼都会单击一次注释。此标签过程需要少少的手动干预,平均每条鱼大约一秒钟。我们的方法使用一个完全卷积的神经网络,其中一个分支每像素分数输出,另一种输出亲和力矩阵的分支。我们使用随机步行来汇总这两个输出,以获得最终精制的每个像素分割输出。我们通过LCFCN损失训练整个模型,从而导致我们的A-LCFCN方法。我们在深鱼数据集上验证了我们的模型,该数据集包含来自澳大利亚东北地区的许多鱼类栖息地。我们的实验结果证实,A-LCFCN在固定注释预算下优于完全监督的分割模型。此外,我们表明A-LCFCN比LCFCN和标准基线取得更好的分割结果。我们已经以\ url {https://github.com/issamlaradji/affinity_lcfcn}发布了代码。

Aquaculture industries rely on the availability of accurate fish body measurements, e.g., length, width and mass. Manual methods that rely on physical tools like rulers are time and labour intensive. Leading automatic approaches rely on fully-supervised segmentation models to acquire these measurements but these require collecting per-pixel labels -- also time consuming and laborious: i.e., it can take up to two minutes per fish to generate accurate segmentation labels, almost always requiring at least some manual intervention. We propose an automatic segmentation model efficiently trained on images labeled with only point-level supervision, where each fish is annotated with a single click. This labeling process requires significantly less manual intervention, averaging roughly one second per fish. Our approach uses a fully convolutional neural network with one branch that outputs per-pixel scores and another that outputs an affinity matrix. We aggregate these two outputs using a random walk to obtain the final, refined per-pixel segmentation output. We train the entire model end-to-end with an LCFCN loss, resulting in our A-LCFCN method. We validate our model on the DeepFish dataset, which contains many fish habitats from the north-eastern Australian region. Our experimental results confirm that A-LCFCN outperforms a fully-supervised segmentation model at fixed annotation budget. Moreover, we show that A-LCFCN achieves better segmentation results than LCFCN and a standard baseline. We have released the code at \url{https://github.com/IssamLaradji/affinity_lcfcn}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源