论文标题

评估基于Twitter的漏洞检测器的性能

Evaluating the Performance of Twitter-based Exploit Detectors

论文作者

de Sousa, Daniel Alves, de Faria, Elaine Ribeiro, Miani, Rodrigo Sanches

论文摘要

补丁优先级是信息系统安全的关键方面,并且在野外利用哪些漏洞的知识是帮助系统管理员完成此任务的强大工具。通过从在线讨论中收集数据并应用机器学习技术来检测现实世界的利用,对社交媒体的分析可以增强结果并带来更多的敏捷性。在本文中,我们使用一种将Twitter数据与公共数据库信息相结合的技术将漏洞分类为被剥削或未探索的漏洞。我们分析了不同分类算法的行为,研究不同的防病毒数据作为地面真实的影响,并尝试各种时间窗口大小。我们的发现表明,使用轻型梯度提升机(LightGBM)可以使结果受益,并且在大多数情况下,与一条推文有关的统计数据和发推文的用户比文本发推文更有意义。我们还展示了使用以前工作中未提及的安全公司的基础真相数据的重要性。

Patch prioritization is a crucial aspect of information systems security, and knowledge of which vulnerabilities were exploited in the wild is a powerful tool to help systems administrators accomplish this task. The analysis of social media for this specific application can enhance the results and bring more agility by collecting data from online discussions and applying machine learning techniques to detect real-world exploits. In this paper, we use a technique that combines Twitter data with public database information to classify vulnerabilities as exploited or not-exploited. We analyze the behavior of different classifying algorithms, investigate the influence of different antivirus data as ground truth, and experiment with various time window sizes. Our findings suggest that using a Light Gradient Boosting Machine (LightGBM) can benefit the results, and for most cases, the statistics related to a tweet and the users who tweeted are more meaningful than the text tweeted. We also demonstrate the importance of using ground-truth data from security companies not mentioned in previous works.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源