论文标题

洒水因果集的局部结构

Local Structure of Sprinkled Causal Sets

论文作者

Fewster, Christopher J., Hawkins, Eli, Minz, Christoph, Rejzner, Kasia

论文摘要

我们描述了撒在时空歧管中的因果集的数值和分析研究。本文的第一部分是对有限因果集的数值研究,这些因果集洒到了Minkowski时空的Alexandrov子集中,$ 1 + 1 $,$ 1 + 2 $和$ 1 + 3 $。特别是,我们考虑了洒水的因果事件的等级2,这是与过去的两个链接的事件集。为每个事件分配了第2个过去事件之一为“首选过去”,产生了“首选过去的结构”,最近提出了作为因果关系d'Alembertian的基础。我们测试六个标准,以选择排名2的过去子集。一个标准在唯一的选择(以很高的概率)方面表现出色,这是一个首选的令人满意的理想属性。本文的第二部分涉及一般时空歧管的因果关系(无限)。在通过泊松度量审查了洒水过程的构建后,我们考虑了各种特定的应用。除其他事项外,我们使用组合手段获得给定同构类别的因果关系的可能性,使用Alexandrov子集中的因果集之间的对应关系,$ 1 + 1 + 1 $ $ 1 +尺寸Minkowski SpaceTime和2d-orders。这些方法还用于计算过去无穷大的预期尺寸,这是洒落的因果集合的总尺寸的一部分。

We describe numerical and analytical investigations of causal sets sprinkled into spacetime manifolds. The first part of the paper is a numerical study of finite causal sets sprinkled into Alexandrov subsets of Minkowski spacetime of dimensions $1 + 1$, $1 + 2$ and $1 + 3$. In particular we consider the rank 2 past of sprinkled causet events, which is the set of events that are two links to the past. Assigning one of the rank 2 past events as `preferred past' for each event yields a `preferred past structure', which was recently proposed as the basis for a causal set d'Alembertian. We test six criteria for selecting rank 2 past subsets. One criterion performs particularly well at uniquely selecting -- with very high probability -- a preferred past satisfying desirable properties. The second part of the paper concerns (infinite) sprinkled causal sets for general spacetime manifolds. After reviewing the construction of the sprinkling process with the Poisson measure, we consider various specific applications. Among other things, we compute the probability of obtaining a sprinkled causal set of a given isomorphism class by combinatorial means, using a correspondence between causal sets in Alexandrov subsets of $1 + 1$ dimensional Minkowski spacetime and 2D-orders. These methods are also used to compute the expected size of the past infinity as a proportion of the total size of a sprinkled causal set.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源