论文标题
隐私的联合优化和应用内移动用户分析和针对性广告的成本
Joint Optimization of Privacy and Cost of in-App Mobile User Profiling and Targeted Ads
论文作者
论文摘要
在线移动广告生态系统提供广告和分析服务,可收集,汇总,处理和交易大量消费者的个人数据并执行基于兴趣的广告目标,从而增加了严重的隐私风险,并且在使用互联网服务时,用户的趋势不断增长。在本文中,我们通过开发一个最佳动态优化的成本效益框架来解决用户的隐私问题,以保护用户隐私,用于分析,基于广告的推论,时间应用程序使用行为模式和基于兴趣的广告定位。解决这个动态模型的主要挑战是在分析过程中缺乏对时变更新的知识。我们制定了一个混合企业优化问题,并提出了一个等效的问题,以表明所提出的算法不需要了解用户行为时变化的更新知识。随后,我们开发了一种在线控制算法来解决等效问题并克服难以通过将其分解为各种情况并实现用户隐私,成本和目标广告之间的权衡来解决非线性编程的困难。我们进行了广泛的实验,并通过使用POC(概念证明)“系统应用程序”实施其关键组件来证明所提出的框架的适用性。我们将提出的框架与其他隐私保护方法进行比较,并研究它是否可以为各种性能参数获得更好的隐私和功能。
Online mobile advertising ecosystems provide advertising and analytics services that collect, aggregate, process, and trade a rich amount of consumers' personal data and carry out interest-based ad targeting, which raised serious privacy risks and growing trends of users feeling uncomfortable while using the internet services. In this paper, we address users' privacy concerns by developing an optimal dynamic optimisation cost-effective framework for preserving user privacy for profiling, ads-based inferencing, temporal apps usage behavioral patterns, and interest-based ad targeting. A major challenge in solving this dynamic model is the lack of knowledge of time-varying updates during the profiling process. We formulate a mixed-integer optimisation problem and develop an equivalent problem to show that the proposed algorithm does not require knowledge of time-varying updates in user behavior. Following, we develop an online control algorithm to solve the equivalent problem and overcome the difficulty of solving nonlinear programming by decomposing it into various cases and to achieve a trade-off between user privacy, cost, and targeted ads. We carry out extensive experimentations and demonstrate the proposed framework's applicability by implementing its critical components using POC (Proof Of Concept) `System App'. We compare the proposed framework with other privacy-protecting approaches and investigate whether it achieves better privacy and functionality for various performance parameters.