论文标题
中子星核的两个组分微观模型中的超导相
Superconducting phases in a two-component microscale model of neutron star cores
论文作者
论文摘要
我们使用现象学金茨堡 - Landau模型确定了两种超氟冷凝物(一种中性,另一个电荷)的混合物的可能基态。尽管该框架适用于带电和中性成分的任何相互作用的凝结 - 晶状体混合物,但我们将重点放在中子星核中的核物质上,在中子核心中,质子和中子冷凝物通过非疾病夹带耦合。我们采用Skyrme相互作用来确定中子恒星的平衡组成,因此在恒星核心内的每个深度处获得了我们的金茨堡 - 兰道模型的现实系数。然后,我们使用金茨堡 - 兰道模型在存在磁场的情况下确定基态。通过这种方式,我们获得了六个代表性Skyrme模型的超导相图,从而揭示了整个中子星核的微物理磁通量分布。相图相当复杂,大多数相变的位置只能通过数值计算来确定。但是,我们发现,对于这项工作中考虑的所有状态方程式,大部分核心表现出1.5型超导性,而不是通常假定的II型超导性。对于局部磁场强度,$ \ lyssim 10^{14} \,{\ rm g} $,磁通量不均匀,捆绑着无通量的meissner区域的磁性荧光灯捆。我们提供了一个近似标准,以确定此类型1.5相和内核中I型I区域之间的过渡。
We identify the possible ground states for a mixture of two superfluid condensates (one neutral, the other electrically charged) using a phenomenological Ginzburg-Landau model. While this framework is applicable to any interacting condensed-matter mixture of a charged and a neutral component, we focus on nuclear matter in neutron star cores, where proton and neutron condensates are coupled via non-dissipative entrainment. We employ the Skyrme interaction to determine the neutron star's equilibrium composition, and hence obtain realistic coefficients for our Ginzburg-Landau model at each depth within the star's core. We then use the Ginzburg-Landau model to determine the ground state in the presence of a magnetic field. In this way, we obtain superconducting phase diagrams for six representative Skyrme models, revealing the microphysical magnetic flux distribution throughout the neutron star core. The phase diagrams are rather complex and the locations of most of the phase transitions can only be determined through numerical calculations. Nonetheless, we find that for all equations of state considered in this work, much of the outer core exhibits type-1.5 superconductivity, rather than type-II superconductivity as is generally assumed. For local magnetic field strengths $\lesssim 10^{14} \, {\rm G}$, the magnetic flux is distributed inhomogeneously, with bundles of magnetic fluxtubes separated by flux-free Meissner regions. We provide an approximate criterion to determine the transition between this type-1.5 phase and the type-I region in the inner core.