论文标题

最佳排名的有效在线学习:通过梯度下降降低维度

Efficient Online Learning of Optimal Rankings: Dimensionality Reduction via Gradient Descent

论文作者

Fotakis, Dimitris, Lianeas, Thanasis, Piliouras, Georgios, Skoulakis, Stratis

论文摘要

我们考虑了在线偏好聚合的自然模型,其中一组首选项目$ r_1,r_2,\ ldots,r_t $,以及每个$ r_t $中$ k_t $项目的需求。如果没有$(R_T,K_T)$的事先了解,学习者将保持排名$π_T$,目的是至少$ k_t $ r_T $中的$ k_t $ toke在$π_t$中看起来很高。这是根据用户滚动和单击模式在网页中订购产品或新闻项目的应用程序的偏好汇总的基本问题。经过广泛研究的广义的Min-set-cover(GMSSC)问题是上述设置的正式模型。 GMSSC是NP-HARD,NO-Regret在线学习算法的标准应用在计算上效率低下,因为它们在排名空间中运行。在这项工作中,我们展示了如何在多项式时间内对GMSSC的低遗憾。我们采用从排名到双随机矩阵的空间的尺寸降低,在此应用在线梯度下降。一个关键步骤是通过求解配置LP的偶性来显示如何有效地计算亚级别。使用遗忘的确定性和随机圆形方案,我们将双随机矩阵映射回排名,而GMSSC目标的损失很小。

We consider a natural model of online preference aggregation, where sets of preferred items $R_1, R_2, \ldots, R_t$ along with a demand for $k_t$ items in each $R_t$, appear online. Without prior knowledge of $(R_t, k_t)$, the learner maintains a ranking $π_t$ aiming that at least $k_t$ items from $R_t$ appear high in $π_t$. This is a fundamental problem in preference aggregation with applications to, e.g., ordering product or news items in web pages based on user scrolling and click patterns. The widely studied Generalized Min-Sum-Set-Cover (GMSSC) problem serves as a formal model for the setting above. GMSSC is NP-hard and the standard application of no-regret online learning algorithms is computationally inefficient, because they operate in the space of rankings. In this work, we show how to achieve low regret for GMSSC in polynomial-time. We employ dimensionality reduction from rankings to the space of doubly stochastic matrices, where we apply Online Gradient Descent. A key step is to show how subgradients can be computed efficiently, by solving the dual of a configuration LP. Using oblivious deterministic and randomized rounding schemes, we map doubly stochastic matrices back to rankings with a small loss in the GMSSC objective.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源