论文标题
捕获步骤:为人形机器人行走强大的步行
Capture Steps: Robust Walking for Humanoid Robots
论文作者
论文摘要
稳定的两足步行是人形机器人在日常环境中发挥多功能助手的潜力的关键先决条件。然而,两足步行是一种复杂的运动,需要多个自由度的协调,而它也内在地不稳定且对干扰敏感。必须不断维护步行围栏的平衡。控制平衡的最有效方法是定时的,并放置了恢复步骤 - 捕获步骤 - 吸收了从推动或绊倒中获得的费用势头。我们提出了一个两足步态生成框架,该框架利用阶梯时间和脚部放置技术,以便即使经过严重的干扰,也可以恢复双胞胎的平衡。当响应干扰时,我们的框架会立即修改下一个脚步的位置,并仅使用很少的感应和计算能力生成可控的全向行走。我们利用中央模式生成步态的开环稳定性将线性倒置模型拟合到观察到的质量轨迹中心。然后,我们使用拟合模型来预测合适的脚步位置和时间安排,以在目标步行速度遵循目标步行速度的同时保持平衡。我们的实验显示了迄今为止人类机器人中最强的推送能力之一的定性和统计证据。
Stable bipedal walking is a key prerequisite for humanoid robots to reach their potential of being versatile helpers in our everyday environments. Bipedal walking is, however, a complex motion that requires the coordination of many degrees of freedom while it is also inherently unstable and sensitive to disturbances. The balance of a walking biped has to be constantly maintained. The most effective way of controlling balance are well timed and placed recovery steps -- capture steps -- that absorb the expense momentum gained from a push or a stumble. We present a bipedal gait generation framework that utilizes step timing and foot placement techniques in order to recover the balance of a biped even after strong disturbances. Our framework modifies the next footstep location instantly when responding to a disturbance and generates controllable omnidirectional walking using only very little sensing and computational power. We exploit the open-loop stability of a central pattern generated gait to fit a linear inverted pendulum model to the observed center of mass trajectory. Then, we use the fitted model to predict suitable footstep locations and timings in order to maintain balance while following a target walking velocity. Our experiments show qualitative and statistical evidence of one of the strongest push-recovery capabilities among humanoid robots to date.