论文标题
不变的fatou组件具有两个等级1的限制功能,用于$ \ mathbb {c}^2 $的自动形态函数
Invariant escaping Fatou components with two rank 1 limit functions for automorphisms of $\mathbb{C}^2$
论文作者
论文摘要
我们构建$ \ mathbb {C}^2 $的自态性,更精确的超货物hénon地图,具有不变的fatou组件,恰好具有两个不同的限制功能,这两个功能都具有(通用)等级1。我们还证明了属于不属于Orbit的Orbits of Invarount of Invarount of Invarount of Invaroun of Invaroun of Invaroun supers supers of Invaroun supers of noten nocapers of Invarou complist的一般成长。 $ f(z,w)=(g(z,w),z)$,$ g(z,w):\ mathbb {c}^2 \ rightarrow \ rightarrow \ mathbb {c} $ holomorphic。
We construct automorphisms of $\mathbb{C}^2$, and more precisely transcendental Hénon maps, with an invariant escaping Fatou component which has exactly two distinct limit functions, both of (generic) rank 1. We also prove a general growth lemma for the norm of points in orbits belonging to invariant escaping Fatou components for automorphisms of the form $F(z,w)=(g(z,w),z)$ with $g(z,w):\mathbb{C}^2\rightarrow\mathbb{C}$ holomorphic.