论文标题

伯克霍夫(Birkhoff)的分解重新审视:高速电路开关的稀疏计划

Birkhoff's Decomposition Revisited: Sparse Scheduling for High-Speed Circuit Switches

论文作者

Valls, Víctor, Iosifidis, George, Tassiulas, Leandros

论文摘要

数据中心越来越多地使用高速电路开关来应对不断增长的需求并降低运营成本。电路开关的基本任务之一是计算稀疏的开关配置集合以支持交通需求矩阵。在文献中已经解决了这种问题,其中伯克霍夫(Birkhoff)在1946年提出的方法是分解双随机矩阵的方法。但是,现有方法是启发式方法,并且没有理论保证的开关配置集合(即排列)可以近似流量矩阵(即,缩放的双随机矩阵)。 在本文中,我们重新审视了伯克霍夫的方法,并做出了三项贡献。首先,我们建立了对伯克霍夫算法的稀疏性的第一个理论界限(即,近似流量矩阵所需的开关配置数)。特别是,我们表明,通过使用可允许的置换矩阵的子集,Birkhoff的算法获得了$ε$ -Appproximate分解,最多最多可以$ o(\ log(1 /ε))$排列。其次,我们提出了一种新的算法Birkhoff+,该算法将Frank-Wolfe的财富与Birkhoff的方法相结合,以快速获得稀疏分解。第三,我们从数值上评估了提出的算法的性能,并研究这如何影响电路开关的性能。我们的结果表明,就吞吐量,运行时间和开关配置数量而言,Birkhoff+优于以前的算法。

Data centers are increasingly using high-speed circuit switches to cope with the growing demand and reduce operational costs. One of the fundamental tasks of circuit switches is to compute a sparse collection of switching configurations to support a traffic demand matrix. Such a problem has been addressed in the literature with variations of the approach proposed by Birkhoff in 1946 to decompose a doubly stochastic matrix exactly. However, the existing methods are heuristic and do not have theoretical guarantees on how well a collection of switching configurations (i.e., permutations) can approximate a traffic matrix (i.e., a scaled doubly stochastic matrix). In this paper, we revisit Birkhoff's approach and make three contributions. First, we establish the first theoretical bound on the sparsity of Birkhoff's algorithm (i.e., the number of switching configurations necessary to approximate a traffic matrix). In particular, we show that by using a subset of the admissible permutation matrices, Birkhoff's algorithm obtains an $ε$-approximate decomposition with at most $O( \log(1 / ε))$ permutations. Second, we propose a new algorithm, Birkhoff+, which combines the wealth of Frank-Wolfe with Birkhoff's approach to obtain sparse decompositions in a fast manner. And third, we evaluate the performance of the proposed algorithm numerically and study how this affects the performance of a circuit switch. Our results show that Birkhoff+ is superior to previous algorithms in terms of throughput, running time, and number of switching configurations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源