论文标题
二进制和多组分高透镜难治性碳化物的温度依赖性弹性特性
Temperature-dependent elastic properties of binary and multicomponent high-entropy refractory carbides
论文作者
论文摘要
有关实际应用的温度(t),有关耐火硬质碳化物的弹性模量的可用信息是稀疏和/或不一致的。我们在t = 300、600、900和1200 K上进行了从头算分子动力学(AIMD)模拟,以确定岩石结构(B1)TIC,ZRC,HFC,HFC,VC和TAC化合物的弹性常数(B1)弹性常数的温度依赖性以及多物种型高脑镜头(TI)(TI)(TI,TI,TI,HF) (v,nb,ta,mo,w)c。通过最小二乘应力与应变关系的分析表达式与从三个拉伸和三个剪切变形模式获得的仿真结果的分析表达式来计算二阶弹性常数。此外,我们采用声音速度测量来评估单相B1(Ti,Zr,hf,ta,w)C和(V,nb,nb,ta,ta,mo,w)c在环境条件下的散装,剪切,弹性模量和泊松比。我们的实验结果与AIMD模拟获得的值非常吻合。与先前的从头算计算的预测相比 - 在忽略固有振动效应的同时,有限温度弹性特性的外推造成了热膨胀 - AIMD模拟会在与实验的更加一致性中与t的弹性模量进行软化。我们的模拟结果表明,TAC是该系统,它表现出对拉伸和剪切变形的最高弹性抗性,高达1200 K,并识别高渗透性(V,NB,TA,MO,W)C系统是需要良好的延展性和韧性的候选室内候选室内延伸性和韧性的应用以及较高的温度。
Available information concerning the elastic moduli of refractory carbides at temperatures (T) of relevance for practical applications is sparse and/or inconsistent. We carry out ab initio molecular dynamics (AIMD) simulations at T = 300, 600, 900, and 1200 K to determine the temperature-dependences of the elastic constants of rocksalt-structure (B1) TiC, ZrC, HfC, VC, and TaC compounds as well as multicomponent high-entropy carbides (Ti,Zr,Hf,Ta,W)C and (V,Nb,Ta,Mo,W)C. The second order elastic constants are calculated by least-square fitting of the analytical expressions of stress vs. strain relationships to simulation results obtained from three tensile and three shear deformation modes. Moreover, we employ sound velocity measurements to evaluate the bulk, shear, elastic moduli and Poisson's ratios of single-phase B1 (Ti,Zr,Hf,Ta,W)C and (V,Nb,Ta,Mo,W)C at ambient conditions. Our experimental results are in excellent agreement with the values obtained by AIMD simulations. In comparison with the predictions of previous ab initio calculations - where the extrapolation of finite-temperature elastic properties accounted for thermal expansion while neglecting intrinsic vibrational effects - AIMD simulations produce a softening of elastic moduli with T in closer agreement with experiments. Results of our simulations show that TaC is the system which exhibits the highest elastic resistances to both tensile and shear deformation up to 1200 K, and identify the high-entropy (V,Nb,Ta,Mo,W)C system as candidate for applications that require good ductility and toughness at room as well as elevated temperatures.