论文标题
Black Hole-Neutron Star合并发出的Kilonova发射。 ii。亮度功能以及对重力波触发器和盲目搜索目标观察的影响
Kilonova Emission From Black Hole-Neutron Star Mergers. II. Luminosity Function and Implications for Target-of-opportunity Observations of Gravitational-wave Triggers and Blind Searches
论文作者
论文摘要
我们介绍了黑洞中的星星(BH-NS)合并的详细模拟Kilonova和Gamma-ray Burst(GRB)余辉和Kilonova的光度函数,并讨论了与重力波(GW)检测有关的电磁(EM)对应物的可检测性(EM)对应物的可检测性,该检测是GW触发的目标,并触发了对象的观察。 BH-NS Kilonovae的预测绝对幅度为$ 0.5 \,{\ rm days} $后,合并以$ [-10,-15.5] $落下。模拟的光度函数包含各向异性Kilonova发射的潜在观看角分布信息。我们为未来的第二/2.5/第三代GW检测器模拟GW检测率,可检测距离和信号持续时间。如果BH具有较高的对齐旋转,并且具有更硬的EOS的NS,则BH-NSS倾向于产生更明亮的Kilonovae和余潮。 Kilonova的可检测性对BH旋转特别敏感。如果BHS通常具有低旋转,则很难发现BH-NS EM对应物。对于第二代GW检测器网络,即使假定BH高旋转,也需要$ m _ {\ rm lim lim} \ sim23-24 \,{\ rm mag} $的限制幅度。因此,在Ligo/处女座O3期间缺乏BH-NS相关的Kilonova检测的合理解释是,要么没有EM对应物(陷入困境),要么当前的随访太浅了。这些观察结果仍然有机会检测与SGRB或孤儿余辉相关的轴心喷射余辉。随访观察结果可以检测可能的相关SGRB余气,从中可以研究Kilonova特征。对于时间域的观察,建议对红色过滤器进行高振动搜索,以检测更多相关的Kilonovae和余气。
We present detailed simulations of black hole-neutron star (BH-NS) mergers kilonova and gamma-ray burst (GRB) afterglow and kilonova luminosity function, and discuss the detectability of electromagnetic (EM) counterpart in connection with gravitational wave (GW) detections, GW-triggered target-of-opportunity observations, and time-domain blind searches. The predicted absolute magnitude of the BH-NS kilonovae at $0.5\,{\rm days}$ after the merger falls in $[-10,-15.5]$. The simulated luminosity function contains the potential viewing-angle distribution information of the anisotropic kilonova emission. We simulate the GW detection rates, detectable distances and signal duration, for the future networks of 2nd/2.5th/3rd-generation GW detectors. BH-NSs tend to produce brighter kilonovae and afterglows if the BH has a higher aligned-spin, and a less massive NS with a stiffer EoS. The detectability of kilonova is especially sensitive to the BH spin. If BHs typically have low spins, the BH-NS EM counterparts are hard to discover. For the 2nd generation GW detector networks, a limiting magnitude of $m_{\rm limit}\sim23-24\,{\rm mag}$ is required to detect the kilonovae even if BH high spin is assumed. Thus, a plausible explanation for the lack of BH-NS associated kilonova detection during LIGO/Virgo O3 is that either there is no EM counterpart (plunging events), or the current follow-ups are too shallow. These observations still have the chance to detect the on-axis jet afterglow associated with an sGRB or an orphan afterglow. Follow-up observations can detect possible associated sGRB afterglows, from which kilonova signatures may be studied. For time-domain observations, a high-cadence search in redder filters is recommended to detect more BH-NS associated kilonovae and afterglows.