论文标题

关于正交系列的积极性及其在概率上的应用

On positivity of orthogonal series and its applications in probability

论文作者

Szabłowski, Paweł J.

论文摘要

我们给出了正交系列的必要条件,以将平均水平融合到非负功能。我们在分析和概率上介绍了许多示例和应用。特别是,我们为扩展的兰开斯特型$%\ sum_ {n \ geq 0} c_ {n}α_{n}(x)β_{n}(x)β_{n}(y)$提供了必要和足够的条件β_{n} \ right \} $将平方平方聚合到非负双变量函数。特别是,我们研究了序列的$ c(α,β)$的属性$ \ left \ {c_ {n} \ right \} $,上述串联串联到非负函数并为其提供条件。此外,我们表明,可以找到可以找到兰开斯特类型扩展的双变量分布类别,与在条件随机变量中具有多项式形式的所有条件矩的分布类别相同。

We give necessary and sufficient conditions for an orthogonal series to converge in the mean-squares to a nonnegative function. We present many examples and applications, in analysis and probability. In particular, we give necessary and sufficient conditions for a Lancaster-type of expansion $% \sum_{n\geq 0}c_{n}α_{n}(x)β_{n}(y)$ with two sets of orthogonal polynomials $\left\{ α_{n}\right\} $ and $\left\{ β_{n}\right\} $ to converge in means-squares to a nonnegative bivariate function. In particular, we study the properties of the set $C(α,β)$ of the sequences $\left\{ c_{n}\right\} ,$ for which the above-mentioned series converge to a nonnegative function and give conditions for the membership to it. Further we show that the class of bivariate distributions for which a Lancaster type expansion can be found, is the same as the class of distributions having all conditional moments in the form of polynomials in the conditioning random variable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源