论文标题
通过基于图的迭代检索来改善常识性问题,以回答多个知识源
Improving Commonsense Question Answering by Graph-based Iterative Retrieval over Multiple Knowledge Sources
论文作者
论文摘要
为了促进自然语言的理解,关键是要参与常识或背景知识。但是,如何有效地参与问题的回答系统,在研究学术界和行业中仍在探索中。在本文中,我们通过整合多个知识来源(即概念网,维基百科和剑桥词典)提高了一种新颖的提问方法来提高表现。更具体地说,我们首先引入了一个基于图的新型迭代知识检索模块,该模块迭代地检索了与给定问题及其选择有关的概念和实体,从多个知识源中。之后,我们使用预先训练的语言模型来编码问题,检索知识和选择,并提出答案选择引起注意的注意机制,以融合先前模块的所有隐藏表示形式。最后,用于特定任务的线性分类器用于预测答案。 CommonSenseQA数据集的实验结果表明,我们的方法显着优于其他竞争方法,并实现了新的最新方法。此外,进一步的消融研究证明了我们基于图的迭代知识检索模块以及从多个知识源检索和综合背景知识的答案选择的注意力模块的有效性。
In order to facilitate natural language understanding, the key is to engage commonsense or background knowledge. However, how to engage commonsense effectively in question answering systems is still under exploration in both research academia and industry. In this paper, we propose a novel question-answering method by integrating multiple knowledge sources, i.e. ConceptNet, Wikipedia, and the Cambridge Dictionary, to boost the performance. More concretely, we first introduce a novel graph-based iterative knowledge retrieval module, which iteratively retrieves concepts and entities related to the given question and its choices from multiple knowledge sources. Afterward, we use a pre-trained language model to encode the question, retrieved knowledge and choices, and propose an answer choice-aware attention mechanism to fuse all hidden representations of the previous modules. Finally, the linear classifier for specific tasks is used to predict the answer. Experimental results on the CommonsenseQA dataset show that our method significantly outperforms other competitive methods and achieves the new state-of-the-art. In addition, further ablation studies demonstrate the effectiveness of our graph-based iterative knowledge retrieval module and the answer choice-aware attention module in retrieving and synthesizing background knowledge from multiple knowledge sources.