论文标题

基于GPR的模型重建系统,用于使用GPRNET的地下实用程序

GPR-based Model Reconstruction System for Underground Utilities Using GPRNet

论文作者

Feng, Jinglun, Yang, Liang, Hoxha, Ejup, Sanakov, Diar, Sotnikov, Stanislav, Xiao, Jizhong

论文摘要

地面穿透性雷达(GPR)是检测和定位地下物体(即钢筋,公用事管)的最重要的非破坏性评估(NDE)工具之一。以前的许多研究仅着眼于基于GPR图像的特征检测,并且没有一个可以处理稀疏的GPR测量值,以成功地重建一个非常细致且详细的地下对象3D模型,以更好地可视化。为了解决这个问题,本文提出了一种新型的机器人系统,以收集GPR数据,定位地下实用程序并重建地下对象的密集点云模型。该系统由三个模块组成:1)基于视觉惯性的GPR数据收集模块,该模块用全向机器人提供的定位信息标记GPR测量值; 2)深度神经网络(DNN)迁移模块将原始的GPR B扫描图像解释为对象模型的横截面; 3)基于DNN的3D重建模块,即GPRNet,以使用Fine 3D点云生成地下实用程序模型。在本文中,定量和定性实验结果都验证了我们的方法,该方法可以基于稀疏输入(即GPR原始数据不完整和各种噪声)生成管道形实用程序的密集且完整的点云模型。该实验结果综合数据和现场测试数据进一步支持我们方法的有效性。

Ground Penetrating Radar (GPR) is one of the most important non-destructive evaluation (NDE) instruments to detect and locate underground objects (i.e., rebars, utility pipes). Many previous researches focus on GPR image-based feature detection only, and none can process sparse GPR measurements to successfully reconstruct a very fine and detailed 3D model of underground objects for better visualization. To address this problem, this paper presents a novel robotic system to collect GPR data, localize the underground utilities, and reconstruct the underground objects' dense point cloud model. This system is composed of three modules: 1) visual-inertial-based GPR data collection module, which tags the GPR measurements with positioning information provided by an omnidirectional robot; 2) a deep neural network (DNN) migration module to interpret the raw GPR B-scan image into a cross-section of object model; 3) a DNN-based 3D reconstruction module, i.e., GPRNet, to generate underground utility model with the fine 3D point cloud. In this paper, both the quantitative and qualitative experiment results verify our method that can generate a dense and complete point cloud model of pipe-shaped utilities based on a sparse input, i.e., GPR raw data incompleteness and various noise. The experiment results on synthetic data and field test data further support the effectiveness of our approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源