论文标题
通过编辑stylegan的潜在空间来改变真实图像的面部重量
Transforming Facial Weight of Real Images by Editing Latent Space of StyleGAN
论文作者
论文摘要
我们提出一个反转和编辑框架,以自动将输入面图像的面部重量转换为看起来更薄或更重,该框架通过利用在生成对抗网络(GAN)的潜在空间中编码的语义面部属性。使用预训练的StyleGAN作为基础发电机,我们首先采用基于优化的嵌入方法将输入图像倒入StyleGan潜在空间。然后,我们通过监督的学习来确定潜在空间中的面部重量属性方向,并通过沿着提取的特征轴积极或负面移动来编辑倒立潜在代码。从经验上证明,我们的框架可以产生高质量和现实的面部重量转换,而无需从头开始训练大量标记的脸部图像。最终,我们的框架可以用作干预措施的一部分,以激励个人通过可视化其行为对外观的未来影响而做出更健康的食物选择。
We present an invert-and-edit framework to automatically transform facial weight of an input face image to look thinner or heavier by leveraging semantic facial attributes encoded in the latent space of Generative Adversarial Networks (GANs). Using a pre-trained StyleGAN as the underlying generator, we first employ an optimization-based embedding method to invert the input image into the StyleGAN latent space. Then, we identify the facial-weight attribute direction in the latent space via supervised learning and edit the inverted latent code by moving it positively or negatively along the extracted feature axis. Our framework is empirically shown to produce high-quality and realistic facial-weight transformations without requiring training GANs with a large amount of labeled face images from scratch. Ultimately, our framework can be utilized as part of an intervention to motivate individuals to make healthier food choices by visualizing the future impacts of their behavior on appearance.