论文标题

通过基于模型的启发式深度强化学习,用于视觉惯性系统校准的学习轨迹

Learning Trajectories for Visual-Inertial System Calibration via Model-based Heuristic Deep Reinforcement Learning

论文作者

Chen, Le, Ao, Yunke, Tschopp, Florian, Cramariuc, Andrei, Breyer, Michel, Chung, Jen Jen, Siegwart, Roland, Cadena, Cesar

论文摘要

视觉惯性系统依赖于相机内在和传感器间外部设备的精确校准,这些校准通常需要在校准目标前手动执行复杂的运动。在这项工作中,我们提出了一种新型的方法,可以使用基于模型的深度强化学习来获得有利的轨迹进行视觉惯性系统校准。我们的关键贡献是将校准过程建模为马尔可夫决策过程,然后使用粒子群优化的基于模型的深钢筋学习来建立一系列由机器人组执行的校准轨迹。我们的实验表明,在保持相似或较短的路径长度的同时,与随机或手工制作的轨迹相比,我们学到的策略产生的轨迹导致校准误差较低。

Visual-inertial systems rely on precise calibrations of both camera intrinsics and inter-sensor extrinsics, which typically require manually performing complex motions in front of a calibration target. In this work we present a novel approach to obtain favorable trajectories for visual-inertial system calibration, using model-based deep reinforcement learning. Our key contribution is to model the calibration process as a Markov decision process and then use model-based deep reinforcement learning with particle swarm optimization to establish a sequence of calibration trajectories to be performed by a robot arm. Our experiments show that while maintaining similar or shorter path lengths, the trajectories generated by our learned policy result in lower calibration errors compared to random or handcrafted trajectories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源