论文标题
自旋矩阵理论字符串背景和广告/CFT的penrose限制
Spin Matrix Theory String Backgrounds and Penrose Limits of AdS/CFT
论文作者
论文摘要
自旋矩阵理论(SMT)限制提供了一种捕获BPS边界附近AD/CFT对应的动力学的方法。在字符串理论方面,这些限制导致非相关主义的Sigma模型,这些模型可以解释为新型的非相关字符串。该SMT弦理论与非权利主义$ u(1)$ - galilean背景几何形状相结合。在本文中,我们探讨了从广告的Penrose限制获得的PP波背景之间的关系,$ {} _ 5 \ times S^5 $,以及一种新型的$ u(1)$ - 我们称为Flat-Fluxed(FF)背景的Galilean背景。这些FF背景是最简单的SMT字符串背景,从旋转链的角度来看,对应于免费木蛋白。我们提供了$ u(1)$ - 伽利略背景的目录,从ADS $ {} _ 5 \ times s^5 $的字符串理论限制中获得,随后研究了FF背景的这些几何形状的大量充电限制。我们表明,这些限制类似于AD $ {} _ 5 \ Times S^5 $的Penrose限制,并证明了与SMT限制的大电荷/Penrose限制通勤。最后,我们指出,$ u(1)$ - Galilean背景规定了横向SMT字符串嵌入字段的符号歧管。用粒子的SMT极限的哈密顿派生说明了这一点。
Spin Matrix theory (SMT) limits provide a way to capture the dynamics of the AdS/CFT correspondence near BPS bounds. On the string theory side, these limits result in non-relativistic sigma models that can be interpreted as novel non-relativistic strings. This SMT string theory couples to non-relativistic $U(1)$-Galilean background geometries. In this paper, we explore the relation between pp-wave backgrounds obtained from Penrose limits of AdS${}_5 \times S^5$, and a new type of $U(1)$-Galilean backgrounds that we call flat-fluxed (FF) backgrounds. These FF backgrounds are the simplest possible SMT string backgrounds and correspond to free magnons from the spin chain perspective. We provide a catalogue of the $U(1)$-Galilean backgrounds one obtains from SMT limits of string theory on AdS${}_5 \times S^5$ and subsequently study large charge limits of these geometries from which the FF backgrounds emerge. We show that these limits are analogous to Penrose limits of AdS${}_5 \times S^5$ and demonstrate that the large charge/Penrose limits commute with the SMT limits. Finally, we point out that $U(1)$-Galilean backgrounds prescribe a symplectic manifold for the transverse SMT string embedding fields. This is illustrated with a Hamiltonian derivation for the SMT limit of a particle.