论文标题

物理知识的神经网络超级分辨率,用于对流扩散模型

Physics-Informed Neural Network Super Resolution for Advection-Diffusion Models

论文作者

Wang, Chulin, Bentivegna, Eloisa, Zhou, Wang, Klein, Levente, Elmegreen, Bruce

论文摘要

物理知识的神经网络(NN)是一种新兴技术,可改善空间分辨率并实施物理模型或卫星观察的数据的物理一致性。在大气污染李子的对流扩散模型中,探索了从低分辨率图像中重建高分辨率图像($ 4 \ times $)的超分辨率(SR)技术。除了基于常规像素的约束之外,当对流扩散方程限制NN时,SR性能通常会提高。通过随机删除模拟中的图像像素并允许系统学习缺失数据的内容,可以研究SR技术也重建缺少数据的能力。当物理方程式在SR中包含$ 40 \%$ $像素损失时,可以证明$ 11 \%$的S/N的改进。与标准的SR方法相比,物理知识的NN可以准确地重建损坏的图像,并产生更好的结果。

Physics-informed neural networks (NN) are an emerging technique to improve spatial resolution and enforce physical consistency of data from physics models or satellite observations. A super-resolution (SR) technique is explored to reconstruct high-resolution images ($4\times$) from lower resolution images in an advection-diffusion model of atmospheric pollution plumes. SR performance is generally increased when the advection-diffusion equation constrains the NN in addition to conventional pixel-based constraints. The ability of SR techniques to also reconstruct missing data is investigated by randomly removing image pixels from the simulations and allowing the system to learn the content of missing data. Improvements in S/N of $11\%$ are demonstrated when physics equations are included in SR with $40\%$ pixel loss. Physics-informed NNs accurately reconstruct corrupted images and generate better results compared to the standard SR approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源