论文标题
在压力下散装MOS2中理想的激子绝缘子的证据
Evidence of ideal excitonic insulator in bulk MoS2 under pressure
论文作者
论文摘要
激子的自发凝结是一种与超导体中库珀对凝结相似的长期寻求的现象。如果激子的结合能 - 电子(e)和孔(h)对通过库仑力相互作用,则预计在热力学平衡的半导体中会发生这种情况。由于库仑筛查的减少,过渡金属二分法是EI实现的出色候选物,实际上在几层系统中观察到了结构相变。但是,以前的工作无法解散过渡的起源在于结合激子的形成或声子的软化中。在这里,我们专注于批量MOS2,并从理论上证明,在高压下,它容易容纳有限动量的真正激子的凝结,而声子分散剂仍然是规则的。从第一原则的多体扰动理论开始,我们还预测,EI的自搭配电子电荷密度维持了平面的永久性电偶极矩,并在层平面上具有防纤维电纹理:在EI阶段的抗纤维上纹理:在EI阶段的开始,这些光子的光子可以为IctiCon Moment ammomenmmmmmmommmans提供独特的Raman raman raman Finger-ei ii II II II II II II ei II形成。最后,我们在拉曼特征中鉴定出这种指纹,以前在实验中观察到,从而直接提供了对30 GPA以上的块状MOS2中理想的激子绝缘体相的直接确认。
Spontaneous condensation of excitons is a long sought phenomenon analogous to the condensation of Cooper pairs in a superconductor. It is expected to occur in a semiconductor at thermodynamic equilibrium if the binding energy of the excitons---electron (e) and hole (h) pairs interacting by Coulomb force---overcomes the band gap, giving rise to a new phase: the 'excitonic insulator' (EI). Transition metal dichalcogenides are excellent candidates for the EI realization because of reduced Coulomb screening, and indeed a structural phase transition was observed in few-layer systems. However, previous work could not disentangle to which extent the origin of the transition was in the formation of bound excitons or in the softening of a phonon. Here we focus on bulk MoS2 and demonstrate theoretically that at high pressure it is prone to the condensation of genuine excitons of finite momentum, whereas the phonon dispersion remains regular. Starting from first-principles many-body perturbation theory, we also predict that the self-consistent electronic charge density of the EI sustains an out-of-plane permanent electric dipole moment with an antiferroelectric texture in the layer plane: At the onset of the EI phase, those optical phonons that share the exciton momentum provide a unique Raman fingerprint for the EI formation. Finally, we identify such fingerprint in a Raman feature that was previously observed experimentally, thus providing direct spectroscopic confirmation of an ideal excitonic insulator phase in bulk MoS2 above 30 GPa.