论文标题
渐近对称代数的变形及其物理实现
Deformation of Asymptotic Symmetry Algebras and Their Physical Realizations
论文作者
论文摘要
该论文致力于研究无限尺寸谎言代数的变形和刚性,该代数不受Hochschild-Serre分解定理的影响。特别是,我们考虑$ bms_ {3} $,virasoro-kac-moody和$ bms_ {4} $代数及其中心扩展,它们被视为渐近性和/或近地平线对称代数的Einstein Grattity for Einstein Grattity for Einstein Grattity for Einstein Grattity for Einstein Grattity in Einstein Grattity in Einstein in the $ 3D $ flat,Ads $ _ flats $ _ {3} $ 4D $ 4D $ 4D。我们还探索了Maxwell-BMS代数的可能变形,该代数以$ 2+1 $ dimensional Maxwell代数在Chern-Simons重力理论不变为Chern-Simons Gravity理论的渐近对称性代数获得。我们发现这些代数不是刚性的,并且可以变形为新的非同构无限尺寸(族)代数。我们通过直接计算以及共同分析研究这些变形。然后,我们通过这些代数的变形以及所有可能的中央扩展来对所有代数进行分类。我们提出/猜想的是,无限尺寸代数的Hochschild-Serre分解定理,以及通过变形获得的族代数的新刚度概念。我们还探讨了通过变形程序获得的代数家族的物理实现和意义。
This thesis is devoted to the study of the deformation and rigidity of infinite dimensional Lie algebras which are not subject to the Hochschild-Serre factorization theorem. In particular, we consider $bms_{3}$, Virasoro-Kac-Moody and $bms_{4}$ algebras and their central extensions which are respectively obtained as asymptotic and/or near horizon symmetry algebras for Einstein gravity on $3d$ flat, AdS$_{3}$ and $4d$ flat spacetimes. We also explore possible deformations of the Maxwell-BMS algebra, which is obtained as asymptotic symmetry algebra of the Chern-Simons gravity theory invariant under the $2+1$ dimensional Maxwell algebra. We find that these algebras are not rigid and can be deformed into new non isomorphic infinite dimensional (family of) algebras. We study these deformations by direct computations and also by cohomological analysis. We then classify all the algebras obtained through deformation of these algebras as well as all possible central extensions thereof. We propose/conjecture an extension of the Hochschild-Serre factorization theorem for infinite dimensional algebras as well as introducing a new notion of rigidity for family algebras obtained through deformation. We also explore physical realizations and significance of the family of algebras we obtain through the deformation procedure.