论文标题

Littlewood-Richardson系数,Springer纤维和诱发表示形式的歼灭器品种

Littlewood-Richardson Coefficient, Springer Fibers and the Annihilator Varieties of Induced Representations

论文作者

Zhang, Zhuohui

论文摘要

对于$ g = gl(n,\ mathbb {c})$和一个抛物线子组$ p = ln $,带有两个块Levi子组$ l = gl(n_1)\ times gl(n_2)$,space $ g \ cdot(\ cdot(\ cdot) $ \ mathcal {o} $是$ \ mathfrak {l} $的nilpotent轨道,是$ \ mathfrak {g} $的nilpotent轨道的结合。在我们的主要定理的第一部分中,我们使用几何sakate等价来证明$ \ MATHCAL {O'} \ subset g \ cdot(\ Mathcal {\ Mathcal {\ Mathcal {o}}}+\ Mathfrak {n})$ if,并且仅在某些Littlewood-Richardon Coeff do van and vansish。我们主要定理的第二部分描述了空间的几何形状$ \ mathcal {o} \ cap \ mathfrak {p} $,这是$ g $的惠特克支持和歼灭者的重要空间。

For $G=GL(n,\mathbb{C})$ and a parabolic subgroup $P=LN$ with a two-block Levi subgroup $L=GL(n_1)\times GL(n_2)$, the space $G\cdot (\mathcal{\mathcal{O}}+\mathfrak{n})$, where $\mathcal{O}$ is a nilpotent orbit of $\mathfrak{l}$, is a union of nilpotent orbits of $\mathfrak{g}$. In the first part of our main theorem, we use the geometric Sakate equivalence to prove that $\mathcal{O'}\subset G\cdot (\mathcal{\mathcal{O}}+\mathfrak{n})$ if and only if some Littlewood-Richardson coefficients do not vanish. The second part of our main theorem describes the geometry of the space $\mathcal{O}\cap\mathfrak{p}$, which is an important space to study for the Whittaker supports and annihilator varieties of representations of $G$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源