论文标题
与时间相关的破裂域上的分数开尔文 - voigt模型的存在结果
An existence result for the fractional Kelvin-Voigt's model on time-dependent cracked domains
论文作者
论文摘要
我们证明了涉及时间依赖于时间依赖的破裂域的涉及Caputo衍生物的分数Kelvin-Voigt模型的存在结果。我们首先显示了该问题正规版本的解决方案。然后,我们使用一个紧凑的论点来得出,分数开尔文 - voigt的模型承认满足能量消散不平等的解决方案。最后,我们证明,当裂纹不移动时,解决方案是唯一的。
We prove an existence result for the fractional Kelvin-Voigt's model involving Caputo's derivative on time-dependent cracked domains. We first show the existence of a solution to a regularized version of this problem. Then, we use a compactness argument to derive that the fractional Kelvin-Voigt's model admits a solution which satisfies an energy-dissipation inequality. Finally, we prove that when the crack is not moving, the solution is unique.