论文标题

Descilled Graph协作过滤

Deoscillated Graph Collaborative Filtering

论文作者

Liu, Zhiwei, Meng, Lin, Jiang, Fei, Zhang, Jiawei, Yu, Philip S.

论文摘要

协作过滤(CF)信号对于学习用户和项目嵌入的推荐系统〜(RS)模型至关重要。高阶信息可以减轻基于CF的方法的冷门问题,该方法是通过在用户 - 项目两部分图上传播信息来建模的。最近的图神经网络〜(GNNS)建议堆叠多个聚集层以传播高阶信号。但是,振荡问题,两分图的不同位置以及固定传播模式破坏了多层结构传播信息的能力。振荡问题来自两分结构,因为用户的信息仅传播到项目。除振荡问题外,不同的位置表明在传播过程中应考虑节点的密度。此外,层固定的繁殖模式在层之间引入了冗余信息。为了解决这些问题,我们提出了一种新的RS模型,称为\ textbf {d} ioscillated \ textbf {g} raph \ textbf {c} ollaborative \ textbf {f} iLtering〜(dgcf)。我们在其中介绍了跨跳跃繁殖层,以打破两分的繁殖结构,从而解决了振荡问题。此外,我们设计了创新的局部自适应层,这些层可以适应性地传播信息。堆叠多个跨跳的传播层和位置层构成了DGCF模型,该模型将高阶CF信号自适应地自适应到节点和层的位置。对现实世界数据集的广泛实验显示了DGCF的有效性。详细的分析表明,DGCF解决了振荡问题,自适应地学习了当地因素,并具有层次的传播模式。我们的代码可在https://github.com/jimliu96/deoscirec在线获得。

Collaborative Filtering (CF) signals are crucial for a Recommender System~(RS) model to learn user and item embeddings. High-order information can alleviate the cold-start issue of CF-based methods, which is modelled through propagating the information over the user-item bipartite graph. Recent Graph Neural Networks~(GNNs) propose to stack multiple aggregation layers to propagate high-order signals. However, the oscillation problem, varying locality of bipartite graph, and the fix propagation pattern spoil the ability of multi-layer structure to propagate information. The oscillation problem results from the bipartite structure, as the information from users only propagates to items. Besides oscillation problem, varying locality suggests the density of nodes should be considered in the propagation process. Moreover, the layer-fixed propagation pattern introduces redundant information between layers. In order to tackle these problems, we propose a new RS model, named as \textbf{D}eoscillated \textbf{G}raph \textbf{C}ollaborative \textbf{F}iltering~(DGCF). We introduce cross-hop propagation layers in it to break the bipartite propagating structure, thus resolving the oscillation problem. Additionally, we design innovative locality-adaptive layers which adaptively propagate information. Stacking multiple cross-hop propagation layers and locality layers constitutes the DGCF model, which models high-order CF signals adaptively to the locality of nodes and layers. Extensive experiments on real-world datasets show the effectiveness of DGCF. Detailed analyses indicate that DGCF solves oscillation problem, adaptively learns local factor, and has layer-wise propagation pattern. Our code is available online at https://github.com/JimLiu96/DeosciRec.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源