论文标题
DeepReach:一种高维度可及性的深度学习方法
DeepReach: A Deep Learning Approach to High-Dimensional Reachability
论文作者
论文摘要
Hamilton-Jacobi(HJ)可达性分析是确保动态控制系统的性能和安全性能的重要形式验证方法。它的优势包括与一般非线性系统动力学的兼容性,对有限干扰的形式处理以及处理状态和输入约束的能力。但是,它涉及求解PDE,其计算和内存复杂性相对于状态变量的数量,其直接使用限制在小规模系统中。我们提出了DeepReach,这种方法利用正弦网络中的新发展来开发神经PDE求解器,以解决高维的可及性问题。 DeepReach的计算要求不是直接随状态维度扩展,而是随着基础可到达管的复杂性而进行的。 DeepReach与最先进的可及性方法相当,不需要对PDE解决方案进行任何明确的监督,可以轻松处理外部干扰,对抗输入和系统约束,并且还为系统提供了安全控制器。我们在9D多车碰撞问题以及由自主驾驶应用程序的动机上展示了深度沟通以及10D狭窄的通行问题。
Hamilton-Jacobi (HJ) reachability analysis is an important formal verification method for guaranteeing performance and safety properties of dynamical control systems. Its advantages include compatibility with general nonlinear system dynamics, formal treatment of bounded disturbances, and the ability to deal with state and input constraints. However, it involves solving a PDE, whose computational and memory complexity scales exponentially with respect to the number of state variables, limiting its direct use to small-scale systems. We propose DeepReach, a method that leverages new developments in sinusoidal networks to develop a neural PDE solver for high-dimensional reachability problems. The computational requirements of DeepReach do not scale directly with the state dimension, but rather with the complexity of the underlying reachable tube. DeepReach achieves comparable results to the state-of-the-art reachability methods, does not require any explicit supervision for the PDE solution, can easily handle external disturbances, adversarial inputs, and system constraints, and also provides a safety controller for the system. We demonstrate DeepReach on a 9D multi-vehicle collision problem, and a 10D narrow passage problem, motivated by autonomous driving applications.