论文标题
过滤的匹配和简单络合物
Filtered matchings and simplicial complexes
论文作者
论文摘要
对于任何有限的简单复合物X,我们将自然过滤从Chari和Joswig的离散的Morse复合物开始,再到X的匹配复合物。这种构造导致了几种同源性理论的定义,我们在许多示例中计算了许多同源性理论。我们还完全根据简单复合物的同源性确定与该过滤相关的分级对象。最后一个结果为图形的顶点 - 偶发循环的数量提供了一些连接。
To any finite simplicial complex X, we associate a natural filtration starting from Chari and Joswig's discrete Morse complex and abutting to the matching complex of X. This construction leads to the definition of several homology theories, which we compute in a number of examples. We also completely determine the graded object associated to this filtration in terms of the homology of simpler complexes. This last result provides some connections to the number of vertex-disjoint cycles of a graph.