论文标题

比较$ k(n)$ - 本地类别中的二元性

Comparing Dualities in the $K(n)$-local Category

论文作者

Goerss, Paul G., Hopkins, Michael J.

论文摘要

在他们在期间地图上的工作以及lubin-tate空间的双重捆绑中,格罗斯和第二作者在$ k(n)$中的某些类型的$ n $ complexes的刺刺头和棕色 - 卡梅内茨的双重表现之间写下了等效性。在当时的文化中,受过教育的读者可以访问这些结果,但这似乎不再是这种情况。因此,在本说明中,我们提供了详细信息。因为我们处于庞大的素数,所以关键的结果是代数:在卢宾(Lubin-Tate)空间的皮卡德(Picard)组中,两个重要的可逆滑轮成为同构模量$ p $。

In their work on the period map and the dualizing sheaf for Lubin-Tate space, Gross and the second author wrote down an equivalence between the Spanier-Whitehead and Brown-Comenetz duals of certain type $n$-complexes in the $K(n)$-local category at large primes. In the culture of the time, these results were accessible to educated readers, but this seems no longer to be the case; therefore, in this note we give the details. Because we are at large primes, the key result is algebraic: in the Picard group of Lubin-Tate space, two important invertible sheaves become isomorphic modulo $p$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源