论文标题
blocks_3d:一般3D共形块的软件
blocks_3d: Software for general 3d conformal blocks
论文作者
论文摘要
我们介绍了用于计算3D CFT中使用任意Lorentz表示的操作员的四点共形块的软件块_3D。它使用Zamolodchikov样递归关系来计算交叉对称配置周围的块的数值衍生物。它被实现为重型,多线程,C ++应用程序。我们为包含标量,费米和应力张量的相关器提供性能基准。作为示例应用程序,我们在费米子的四点函数上重新计算了引导范围,并研究了先前观察到的急速跳跃是否可以使用“假发”效应来解释。我们得出的结论是,假的主要效应无法完全解释跳跃优点附近的“死胡同” CFT的可能存在。
We introduce the software blocks_3d for computing four-point conformal blocks of operators with arbitrary Lorentz representations in 3d CFTs. It uses Zamolodchikov-like recursion relations to numerically compute derivatives of blocks around a crossing-symmetric configuration. It is implemented as a heavily optimized, multithreaded, C++ application. We give performance benchmarks for correlators containing scalars, fermions, and stress tensors. As an example application, we recompute bootstrap bounds on four-point functions of fermions and study whether a previously observed sharp jump can be explained using the "fake primary" effect. We conclude that the fake primary effect cannot fully explain the jump and the possible existence of a "dead-end" CFT near the jump merits further study.