论文标题
自组织网络:肌球蛋白1的达尔文进化
Self-Organized Networks: Darwinian Evolution of Myosin-1
论文作者
论文摘要
细胞骨架是基于聚合蛋白的自组织网络:肌动蛋白,微管蛋白,并由运动蛋白(例如肌球蛋白,驱动蛋白和动力蛋白)驱动。他们积极的达尔文进化使他们能够接近优化的功能(自组织的批判性)。细胞骨架运动蛋白肌球蛋白1的真核演化的主要特征与肌动蛋白和微管蛋白相似,但也显示出与其动力学功能相关的显着差异。优化的(长)水源性波表征了达尔文式的分子水平向优化功能(自组织临界)进化。肌动蛋白1的N末端和中央结构域以不同的速率在真核生物中演变,中央域的水平极端极端具有最佳的活性在人类中。一个测试表明,在优化功能附近,水质缩放缩放可以产生高于1%的准确性。朝着同步级别的超极值的进化与涉及高尔基体配合物的人类中Mys-1的特殊功能有关。
Cytoskeletons are self-organized networks based on polymerized proteins: actin, tubulin, and driven by motor proteins, such as myosin, kinesin and dynein. Their positive Darwinian evolution enables them to approach optimized functionality (self-organized criticality). The principal features of the eukaryotic evolution of the cytoskeleton motor protein myosin-1 parallel those of actin and tubulin, but also show striking differences connected to its dynamical function. Optimized (long) hydropathic waves characterize the molecular level Darwinian evolution towards optimized functionality (self-organized criticality). The N-terminal and central domains of myosin-1 have evolved in eukaryotes at different rates, with the central domain hydropathic extrema being optimally active in humans. A test shows that hydropathic scaling can yield accuracies of better than 1% near optimized functionality. Evolution towards synchronized level extrema is connected to a special function of Mys-1 in humans involving Golgi complexes.