论文标题
公制空间的框架
Frames for Metric Spaces
论文作者
论文摘要
我们对度量空间的框架进行系统的研究。我们证明,每个可分开的度量空间都允许公制$ \ Mathcal {M} _D $ -FRAME。通过不含Lipschitz的Banach空间,我们表明,公制空间的框架和Banach空间子集的框架之间有一个对应关系。我们得出了公制框架的一些特征。我们还得出了公制帧的稳定性结果。
We make a systematic study of frames for metric spaces. We prove that every separable metric space admits a metric $\mathcal{M}_d$-frame. Through Lipschitz-free Banach spaces we show that there is a correspondence between frames for metric spaces and frames for subsets of Banach spaces. We derive some characterizations of metric frames. We also derive stability results for metric frames.