论文标题
圆上非线性抛物线方程系统的最终动力学
Final Dynamics of Systems of Nonlinear Parabolic Equations on the Circle
论文作者
论文摘要
我们考虑圆圈上的耗散反应 - 扩散 - 转移系统的类别,并获得系统的最终(在很大程度上)的相位动力学在$ \ mathbb {r}^{n} $中的ode中可以描述系统的最终相位动力学。恰恰在此类中,最近构建了没有指示特性的数学物理学问题的第一个例子。
We consider the class of dissipative reaction-diffusion-convection systems on the circle and obtain conditions under which the final (at large times) phase dynamics of a system can be described by an ODE with Lipschitz vector field in $\mathbb{R}^{N}$. Precisely in this class, the first example of a parabolic problem of mathematical physics without the indicated property was recently constructed.