论文标题

在异质簇中分发稀疏基质/图形应用 - 一项实验研究

Distributing Sparse Matrix/Graph Applications in Heterogeneous Clusters -- an Experimental Study

论文作者

Tzovas, Charilaos, Predari, Maria, Meyerhenke, Henning

论文摘要

科学和工程应用中的许多问题都包含稀疏的矩阵或图形作为主要输入对象,例如网格上的数值模拟。如今,大型输入很丰富,需要并行处理记忆尺寸和速度。为了优化在集群系统上执行此类仿真,需要将输入问题适当地分布到处理单元(PUS)上。此类簇越来越频繁地包含不同的CPU或CPU和GPU的组合。这种异质性使负载分配问题非常具有挑战性。我们的研究的激励是,观察到建立的分区工具不能解决这种异质分布问题以及均匀的问题。 在本文中,我们首先制定了用于异质体系结构的平衡负载分布问题,作为多目标,单构造优化问题。然后,我们将问题分为两个阶段,并提出了一种贪婪的方法,以确定每个PU的最佳块大小。然后将这些块尺寸馈入众多现有的图形分区者,以便我们检查它们处理上述问题的能力。我们认为的工具之一是我们以前的作品的扩展(Von Looz等,ICPP'18),称为Geographer。我们对众所周知的基准网格的实验表明,只有两个正在考虑的工具能够产生良好的质量。这两个是对木质(几何和组合变体)和地理学家。虽然Parmetis的速度更快,但地理学家平均得出更高的质量。

Many problems in scientific and engineering applications contain sparse matrices or graphs as main input objects, e.g. numerical simulations on meshes. Large inputs are abundant these days and require parallel processing for memory size and speed. To optimize the execution of such simulations on cluster systems, the input problem needs to be distributed suitably onto the processing units (PUs). More and more frequently, such clusters contain different CPUs or a combination of CPUs and GPUs. This heterogeneity makes the load distribution problem quite challenging. Our study is motivated by the observation that established partitioning tools do not handle such heterogeneous distribution problems as well as homogeneous ones. In this paper, we first formulate the problem of balanced load distribution for heterogeneous architectures as a multi-objective, single-constraint optimization problem. We then split the problem into two phases and propose a greedy approach to determine optimal block sizes for each PU. These block sizes are then fed into numerous existing graph partitioners, for us to examine how well they handle the above problem. One of the tools we consider is an extension of our own previous work (von Looz et al, ICPP'18) called Geographer. Our experiments on well-known benchmark meshes indicate that only two tools under consideration are able to yield good quality. These two are Parmetis (both the geometric and the combinatorial variant) and Geographer. While Parmetis is faster, Geographer yields better quality on average.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源