论文标题
贝叶斯工作流程
Bayesian Workflow
论文作者
论文摘要
贝叶斯数据分析方法提供了一种使用概率理论来处理所有观察,模型参数和模型结构中不确定性的有力方法。概率编程语言使指定和适合贝叶斯模型变得更加容易,但这仍然使我们有许多关于构建,评估和使用这些模型的选择,以及计算中剩下的许多挑战。使用贝叶斯推断解决现实世界中的问题不仅需要统计技能,主题知识和编程,而且还需要对数据分析过程中做出的决策的认识。所有这些方面都可以理解为应用贝叶斯统计数据的纠结工作流程的一部分。除推理外,工作流程还包括迭代模型构建,模型检查,验证和对计算问题的故障排除,模型理解和模型比较。我们在几个示例的背景下回顾了工作流程的所有这些方面,请记住,在实践中,即使只有其中的一部分最终与我们的结论有关,我们将适合许多给定问题的模型。
The Bayesian approach to data analysis provides a powerful way to handle uncertainty in all observations, model parameters, and model structure using probability theory. Probabilistic programming languages make it easier to specify and fit Bayesian models, but this still leaves us with many options regarding constructing, evaluating, and using these models, along with many remaining challenges in computation. Using Bayesian inference to solve real-world problems requires not only statistical skills, subject matter knowledge, and programming, but also awareness of the decisions made in the process of data analysis. All of these aspects can be understood as part of a tangled workflow of applied Bayesian statistics. Beyond inference, the workflow also includes iterative model building, model checking, validation and troubleshooting of computational problems, model understanding, and model comparison. We review all these aspects of workflow in the context of several examples, keeping in mind that in practice we will be fitting many models for any given problem, even if only a subset of them will ultimately be relevant for our conclusions.