论文标题
具有单数电位的Schrödinger运算符光谱子空间的定量独特延续
Quantitative unique continuation for spectral subspaces of Schrödinger operators with singular potentials
论文作者
论文摘要
对Schrödinger运算符光谱子空间的最新(无标度)定量延续估计进行了扩展,以允许诸如某些$ l^p $ functions之类的奇异电位。证明是基于相应适应的卡尔曼估计。应用包括随机Schrödinger操作员的Wegner和初始长度估计以及具有单一热生成期限的受控热方程的控制理论。
Recent (scale-free) quantitative unique continuation estimates for spectral subspaces of Schrödinger operators are extended to allow singular potentials such as certain $L^p$-functions. The proof is based on accordingly adapted Carleman estimates. Applications include Wegner and initial length scale estimates for random Schrödinger operators and control theory for the controlled heat equation with singular heat generation term.