论文标题

COVID-19的护理点图像分析

Point of Care Image Analysis for COVID-19

论文作者

Yaron, Daniel, Keidar, Daphna, Goldstein, Elisha, Shachar, Yair, Blass, Ayelet, Frank, Oz, Schipper, Nir, Shabshin, Nogah, Grubstein, Ahuva, Suhami, Dror, Bogot, Naama R., Sela, Eyal, Dror, Amiel A., Vaturi, Mordehay, Mento, Federico, Torri, Elena, Inchingolo, Riccardo, Smargiassi, Andrea, Soldati, Gino, Perrone, Tiziano, Demi, Libertario, Galun, Meirav, Bagon, Shai, Elyada, Yishai M., Eldar, Yonina C.

论文摘要

早期发现Covid-19是包含大流行的关键。基于成像的疾病检测和评估既快速又便宜,因此在Covid-19处理中起着重要作用。 COVID-19更容易在胸部CT中检测到,但是它昂贵,不可存放且难以消毒,这使其不适合护理点(POC)模式。另一方面,胸部X射线(CXR)和肺超声(LUS)被广泛使用,但是,这些方式中的COVID-19发现并不总是很清楚。在这里,我们训练深层神经网络,以显着增强使用CXR和LUS检测,分级和监测COVID-19患者的能力。与以色列的多家医院合作,我们收集了一个大型CXR数据集,并使用此数据集训练一个神经网络,该神经网络可获得COVID-19的90%以上检测率。此外,与Ultra(意大利的超声实验室Trento)和意大利的医院合作,我们获得了带有疾病严重性注释的POC超声数据,并培训了一个深层网络以进行自动严重性分级。

Early detection of COVID-19 is key in containing the pandemic. Disease detection and evaluation based on imaging is fast and cheap and therefore plays an important role in COVID-19 handling. COVID-19 is easier to detect in chest CT, however, it is expensive, non-portable, and difficult to disinfect, making it unfit as a point-of-care (POC) modality. On the other hand, chest X-ray (CXR) and lung ultrasound (LUS) are widely used, yet, COVID-19 findings in these modalities are not always very clear. Here we train deep neural networks to significantly enhance the capability to detect, grade and monitor COVID-19 patients using CXRs and LUS. Collaborating with several hospitals in Israel we collect a large dataset of CXRs and use this dataset to train a neural network obtaining above 90% detection rate for COVID-19. In addition, in collaboration with ULTRa (Ultrasound Laboratory Trento, Italy) and hospitals in Italy we obtained POC ultrasound data with annotations of the severity of disease and trained a deep network for automatic severity grading.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源