论文标题
直接观察单个高尚蛋白分子的结构异质性和互变异性
Direct observation of structural heterogeneity and tautomerization of single hypericin molecules
论文作者
论文摘要
互变异是一种快速的化学反应,其中反应物的结构仅在质子的位置和双键的位置不同。互变异通常发生在天然物质中,是有机和生物化学的基本过程。然而,研究互变异物种的光学特性由于整体平均而具有挑战性。许多分子,例如斑岩,斑岩烯或透明状奎因酮,在互命化过程中表现出过渡偶极矩(TDM)的重新定位,可以在单个分子实验中直接观察到。一个突出的该苯乙烯喹酮是甲状腺素蛋白,表现出抗病毒,抗抑郁和光动力学特性。在这里,我们通过使用共聚焦显微镜与高阶激光模式相结合研究单个高尚蛋白分子。观察图像模式的突然翻转可以得出关于不同互变异符及其转化路径共存的结论。时间依赖性密度功能理论计算表明,高丝调激素是在四个最稳定的互变异物之间循环的。这种方法可以明确地将TDM方向分配给特定的互变异符,并使能够原位确定化学结构。另外,互变异不仅可以通过图像模式取向观察,而且可以视为单个分子的荧光发射中的间歇性。时间相关的单个光子计数使得能够确定Hypericin互变异物的激发态寿命。我们的方法不仅限于金丝丝酸胺,而且可以应用于其他分子,显示互变异过程中TDM的重新定位,有助于更深入地了解这一重要过程。
Tautomerization is a fast chemical reaction where structures of the reactants differ only in the position of a proton and a double bond. Tautomerization often occurs in natural substances and is a fundamental process in organic- and biochemistry. However, studying the optical properties of tautomeric species is challenging due to ensemble averaging. Many molecules, such as porphines, porphycenes or phenanthroperylene quinones, exhibit a reorientation of the transition dipole moment (TDM) during tautomerization, which can be directly observed in a single molecule experiment. A prominent phenanthroperylene quinone is hypericin showing antiviral, antidepressive, and photodynamical properties. Here, we study single hypericin molecules by using confocal microscopy combined with higher order laser modes. Observing abrupt flipping of the image pattern allows to draw conclusions about the coexistence of different tautomers and their conversion path. Time-dependent density functional theory calculations show that hypericin is cycling between the four most stable tautomers. This approach allows to unambiguously assign a TDM orientation to a specific tautomer and enables to determine the chemical structure in situ. Additionally, tautomerization can not only be observed by the image pattern orientation, but also as intermittency in the fluorescence emission of a single molecule. Time correlated single photon counting enables to determine the excited state lifetimes of the hypericin tautomers. Our approach is not only limited to hypericin, but can be applied to other molecules showing a TDM reorientation during tautomerization, helping to get a deeper understanding of this important process.