论文标题
广义的特殊量子步行搜索
Generalized exceptional quantum walk search
论文作者
论文摘要
我们主要研究造成量子步行搜索的出色配置。为了通过AKR算法在二维网格上进行搜索,我们发现了一些有效地由AKR算法找到的新类型配置,并且可以将已知的对角线配置视为其特殊情况。同时,我们提供了两个修改的量子步行模型,可以通过数值模拟来提高特殊配置中的成功概率。此外,我们介绍了广义异常配置的概念,并通过Grover Coin在周期中通过量子步行来考虑搜索。我们发现,最自然的硬币组合模型(G, - ),其中G是Grover扩散转换,是在循环中搜索一个标记的顶点时的广义异常配置。最后,我们发现广义的特殊配置与特殊配置具有不同的量子相干性演变。这些在某种意义上扩展了量子步行搜索的特殊配置的范围。
We mainly study exceptional configuration for coined quantum walk search. For searching on a two-dimensional grid by AKR algorithm, we find some new classes of exceptional configurations that cannot be found by the AKR algorithm effectively and the known diagonal configuration can be regarded as its special case. Meanwhile, we give two modified quantum walk models that can improve the success probability in the exceptional configurations by numerical simulation. Furthermore, we introduce the concept of generalized exceptional configuration and consider search by quantum walk on a cycle with Grover coin. We find that the most natural coin combination model (G,-), where G is a Grover diffusion transformation, is a generalized exceptional configuration when just searching one marked vertex on the cycle. In the end, we find generalized exceptional configuration has a different evolution of quantum coherence from exceptional configuration. These extend largely the range of exceptional configuration of quantum walk search in some sense.