论文标题

$ \ mathrm {gr} _ {g,\ mathrm {ran}(x)} $减少

$\mathrm{Gr}_{G, \mathrm{Ran}(X)}$ is reduced

论文作者

Tao, James

论文摘要

令$ k $为特征零字段。修复平滑的代数曲线$ x $和一个拆分还原组$ g $以上$ k $。我们表明,贝林森 - 德林菲尔德·格拉斯曼尼亚$ \ mathrm {gr} _ {g,\ mathrm {ran}(x)(x)} $是减少的ind-schemes $(\ m iandrm {gr} _ {g,x,x^i} $ fin in in ind-schemes $( $ i $。这意味着每张从仿射$ k $ -scheme到$ \ mathrm {gr} _ {g,\ mathrm {ran}(x)(x)} $因素的每张地图。在证明过程中,我们将“减少计划的减少”的概念概述适用于任何前eaf,我们表明,这种概念在任何伪Ind-scheme上都表现得很好,后者承认其索引类别满足合并特性的索引类别。

Let $k$ be a field of characteristic zero. Fix a smooth algebraic curve $X$ and a split reductive group $G$ over $k$. We show that the Beilinson--Drinfeld affine Grassmannian $\mathrm{Gr}_{G, \mathrm{Ran}(X)}$ is the presheaf colimit of the reduced ind-schemes $(\mathrm{Gr}_{G, X^I})^{\mathrm{red}}$ for finite sets $I$. This implies that every map from an affine $k$-scheme to $\mathrm{Gr}_{G, \mathrm{Ran}(X)}$ factors through a reduced quasi-projective $k$-scheme. In the course of the proof, we generalize the notion of 'reduction of a scheme' to apply to any presheaf, and we show that this notion is well-behaved on any pseudo-ind-scheme which admits a colimit presentation whose indexing category satisfies the amalgamation property.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源