论文标题
高阶不连续的盖尔金方法,用于对称形式的各向异性粘弹性波方程
A high order discontinuous Galerkin method for the symmetric form of the anisotropic viscoelastic wave equation
论文作者
论文摘要
真实培养基中的波传播受各种非平凡的物理现象的影响,例如各向异性,弹性和耗散。关于应力 - 应变关系的假设是地震建模的组成部分,并确定培养基的变形和放松。基于简化流变学的应力 - 应变关系将错误预测地震幅度,这些地震幅度用于定量储层表征。流变学模型的本构方程包括普遍的胡克定律和基于标准线性固体或齐纳近似值的耗散模型的Boltzmann的叠加原理。 在这项工作中,我们引入了一种不均匀和各向异性耗散培养基中波方程的高阶不连续的Galerkin有限元方法。该方法基于各向异性粘弹性项的新对称处理,以及应力 - 应变卷积项的适当记忆变量处理。总之,这些导致了一阶线性双曲线偏微分方程的对称系统。通过针对粘弹性波方程的分析平面波解决方案和分析溶液的收敛研究证明并验证了所提出的数值方案的准确性。在两个维度和三个维度中,显示了有关均质和异质粘弹性介质的各种组合的计算实验。
Wave propagation in real media is affected by various non-trivial physical phenomena, e.g., anisotropy, an-elasticity and dissipation. Assumptions on the stress-strain relationship are an integral part of seismic modeling and determine the deformation and relaxation of the medium. Stress-strain relationships based on simplified rheologies will incorrectly predict seismic amplitudes, which are used for quantitative reservoir characterization. Constitutive equations for the rheological model include the generalized Hooke's law and Boltzmann's superposition principal with dissipation models based on standard linear solids or a Zener approximation. In this work, we introduce a high-order discontinuous Galerkin finite element method for wave equation in inhomogeneous and anisotropic dissipative medium. This method is based on a new symmetric treatment of the anisotropic viscoelastic terms, as well as an appropriate memory variable treatment of the stress-strain convolution terms. Together, these result in a symmetric system of first order linear hyperbolic partial differential equations. The accuracy of the proposed numerical scheme is proven and verified using convergence studies against analytical plane wave solutions and analytical solutions of viscoelastic wave equation. Computational experiments are shown for various combinations of homogeneous and heterogeneous viscoelastic media in two and three dimensions.