论文标题
在具有圆锥形奇异性和地球边界的表面上处方高斯曲率
Prescribing Gaussian curvature on surfaces with conical singularities and geodesic boundary
论文作者
论文摘要
我们研究具有圆锥形奇异性和超临界状态的大地界边界的表面上的高斯曲率的共形度量。利用一个变异参数,我们得出了至少两个边界成分的表面的一般存在结果。这似乎是此环境中的第一个结果。此外,我们允许具有圆锥形奇异性,具有正序和负顺序,即圆锥角度均低于$2π$。
We study conformal metrics with prescribed Gaussian curvature on surfaces with conical singularities and geodesic boundary in supercritical regimes. Exploiting a variational argument, we derive a general existence result for surfaces with at least two boundary components. This seems to be the first result in this setting. Moreover, we allow to have conical singularities with both positive and negative orders, that is cone angles both less and grater than $2π$.