论文标题
通过原恒星进化的数值模拟测试磁盘识别方法
Testing Disk Identification Methods Through Numerical Simulations of Protostellar Evolution
论文作者
论文摘要
我们测试是否可以在应用数值模拟结果的观测值中可靠地确定二元磁盘的半径。首先,我们执行一个核心塌陷模拟,该模拟从旋转的磁化球形芯开始,并继续计算直到原恒星质量达到0.5 msun。然后,对于每组仿真数据,我们计算辐射传输以生成数据立方体以进行合成观察。合成观察的空间和速度分辨率分别为0.15 ARCSEC(20 au)和0.1 km/s。我们定义七个不同的磁盘半径。使用Continuum图像,连续性可见性,C18O通道图和C18O位置速度(PV)图,从合成观测中估算了四个半径。其他三个半径是从模拟中取出的,并使用磁盘旋转,插入运动和密度对比度周围的密度对比度以识别磁盘。最后,我们将从系统性观察估计的磁盘半径与模拟中的磁盘半径进行了比较。我们发现,当使用PV图定义的磁盘半径可以可靠地追踪开普勒磁盘时,当ProtoStellar质量大于M _*> 〜0.2 MSUN,而与视线的倾斜度无关。此外,PV图通过整个原始恒星进化提供了中央恒星质量的准确估计。模拟还表明,偶色磁盘足够大,可以通过进化在重力上不稳定。这样的不稳定磁盘可以在类似的时间范围内显示圆形或螺旋形态。
We test whether the radii of circumstellar disks can be reliably determined in observations applying the results of a numerical simulation. Firstly, we execute a core collapse simulation which starts from a rotating magnetized spherical core, and continue the calculation until the protostellar mass reaches 0.5 Msun. Then, for each set of simulation data, we calculate the radiative transfer to generate the data cube for the synthetic observation. The spatial and velocity resolutions of the synthetic observation are 0.15 arcsec (20 au) and 0.1 km/s, respectively. We define seven different disk radii. Four radii are estimated from the synthetic observation, using the continuum image, continuum visibility, C18O channel map, and C18O position velocity (PV) diagram. The other three radii are taken from the simulation and use the disk rotation, infall motion, and density contrast around the protostar to identify the disk. Finally, we compare the disk radii estimated from the systemic observation with those from the simulation. We find that the disk radius defined using the PV diagram can reliably trace the Keplerian disk when the protostellar mass is larger than M_*>~ 0.2 Msun independent of the inclination angle to the line of sight. In addition, the PV diagram provides an accurate estimate of the central stellar mass through the whole protostellar evolution. The simulation also indicates that the circumstellar disk is massive enough to be gravitationally unstable through the evolution. Such an unstable disk can show either a circular or spiral morphology on a similar timescale.