论文标题

医学图像分割的分布感知的边距校准

Distribution-aware Margin Calibration for Medical Image Segmentation

论文作者

Li, Zhibin, Yu, Litao, Zhang, Jian

论文摘要

JACCARD指数,也称为相交联合会(IOU得分),是医学图像分割中最关键的评估指标之一。但是,直接优化多个目标类别的平均值IOU(MIOU)得分是一个开放的问题。尽管已经提出了一些算法来优化其替代物,但不能保证其概括能力。在本文中,我们提出了一种新型的数据分布感知的边距校准方法,以更好地对MIOU进行更好的概括,以在整个数据分布中,并由刚性下限的基础。该方案可确保根据IOU得分在实践中的更好细分性能。我们评估了提出的边距校准方法对两个医学图像分割数据集的有效性,从而显示了使用深层分割模型比其他学习方案的IOU分数的实质性改进。

The Jaccard index, also known as Intersection-over-Union (IoU score), is one of the most critical evaluation metrics in medical image segmentation. However, directly optimizing the mean IoU (mIoU) score over multiple objective classes is an open problem. Although some algorithms have been proposed to optimize its surrogates, there is no guarantee provided for their generalization ability. In this paper, we present a novel data-distribution-aware margin calibration method for a better generalization of the mIoU over the whole data-distribution, underpinned by a rigid lower bound. This scheme ensures a better segmentation performance in terms of IoU scores in practice. We evaluate the effectiveness of the proposed margin calibration method on two medical image segmentation datasets, showing substantial improvements of IoU scores over other learning schemes using deep segmentation models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源